SKILLS

ENES KUZUCU
QIst| &+905064024980 | enesesvetkuzucu@gmail.com | ® Github | M Linkedin

Programming: Python | C | JAVA | MATLAB | SQL | AMPL

Software & Tools:
LLM: Langchain, CrewAl, Ollama, LangGraph, Llamalndex, HuggingFace
ML: PyTorch, Tensorflow 2, Scikit-learn, BigQuery ML, Prophet
Computer Vision & Image Processing: OpenCV, StableDiffusion, ComfyUl, torchvision, PyTorch Model Zoo,
Optimization & Parallel: GLPK, GUROBI, CUDA, Dask
Data Processing & Databases: Pandas, PySpark, Chroma, Airflow & BigQuerry, MongoDB, PostgreSQL, MySQL
Other: Git, Flask, FastAPI, Django, Docker, Kubernetes, AWS, GCP

Languages: English (TOEFL IBT 90) | Turkish | Russian

PyPI packages: LLMService proteas facexformer-pipeline categorizer serpengine brightdata

EXPERIENCE
Data Scientist EETech, USA (Remote) Fes 2021 — Auc 2025

LLM Pipeline for Data Imputation and Normalization: Developed custom data imputation pipeline. The core goal was to
leverage SERP and Web Scraping and LLMs to find missing information about products. | already had open source
packages related to scraping and LLM based data extraction. We combined 3 modules for our custom use case and serve
the pipeline over fastAPIl. | also added context aware mode where LLM uses injected context for data extraction. This
application solved a chronic problem for electronic manufacturers and distributors and is currently used by two
distributors.

Since concurrency limitations of each submodule were different for different reasons, | used a custom asycn logic to allow
faster operations. .

LLM-based Document Processor - RAG - Application: Created a python workflow for processing datasheets (technical
PDFs) aimed at reducing work hours spent by contractors on manual information extraction. | was responsible for the
initial Literature Review and coming up with fast solutions. We explored different LLMs and tested their data extraction
capabilities using custom tailored metrics with labeled mini datasets. These tests included VLLMs and local modals.

Used Chroma as a vector database and worked on different chunking strategies. In the end we were able to reach around
55% collective similarity score for existing data and 9% collective similarity score for tests where we test data extraction
with non-existing data irrelevant.

We started using a context module for each page in pdfs. Some context from the very first page and last page is injected
and this helped greatly increase our collective similarity score to %68 percent.

Although there are no official measures, our metrics reach a 80% reduction in hours for specific tasks like Product Change
Notice (PCN) extraction.

Demand Forecasting and Custom Data Quality Metrics for Time-Signals: Developed a multi-model demand forecasting
application, achieving 93% accuracy for increase/decrease predictions based on 3 months of cross-validation results.
Created custom data quality metrics, such as data integrity score, time series cohesion score, and predictability score, to
segment datasets based on their forecastability.

Data Cleaning Strategy for Electronic Component Dataset: Implemented a robust data cleaning strategy for a crawled
electronic component dataset consisting of 120 million rows. Developed multiple custom tailored filters and created a
pipeline mechanism using the Prefect package to process them. Successfully eliminating 98% of noise while retaining
96% data coverage. Used Pandas and Spark extensively

Team Growth in Turkey: Responsible for expanding our developer team in Turkey, | collaborated with three recruiter
agencies and conducted interviews for various positions, including technical data science interviews. Successfully grew
the team size from 2 to 9 members.

Founder / Lead Backend Engineer budgety.ai Jury 2024 - May 2025

At its core, budgety.ai is a tool which extracts and categorizes records from bank statement PDFs for personal finance
management via an LLM-driven pipeline.
Split the backend into four parts:

o Table extraction from documents: This was challenging due to the lack of standardization across bank statement
files and variations between banks. Not all PDFs work with pdfminer under the same configuration. | devised a
complex workflow to process PDFs through various libraries, including OCR, as well as AWS services..

o Table normalization: Normalizing table column names, and date and amount/spending related columns. It is
harder than it sounds because you have to tackle with various of conventions regarding date and amount

http://github.com/karaposu
https://www.linkedin.com/in/enes-kuzucu/
https://pypi.org/project/llmservice/
https://pypi.org/project/proteas/
https://pypi.org/project/facexformer-pipeline/
https://pypi.org/project/categorizer/
https://pypi.org/project/serpengine/
https://pypi.org/project/brightdata/
http://budgety.ai

o Categorization: Developed a custom LLM-based categorizer. Categories are defined in a YAML file, and the
system categorizes input strings accordingly. | then extended it to handle batch processing with threading, later
converting it to asyncio-based batch support, and finally added keyword-based and pattern-based fast-path
solutions.

o FastAPI serving: Built the entire backend from scratch using FastAPI and SQLAIchemy, with a modular service
layer, asynchronous background workers, and JWT authentication. Deployed a fully containerized CI/CD pipeline
on AWS ECS, employing repository and service patterns, background tasks, and dependency injection for cleaner
architecture.

e The biggest challenge was productionizing the app. It was humbling in terms of understanding and managing the entire
business aspect

Backend Developer & Data Scientist TeamProcure Enigma Prototype AucusTt 2024 - October 2024

e Led a team to deliver a working prototype of Enigma, an LLM-powered chatbot that converts natural language into SQL, runs queries
against a 100-table test database, and generates visualisations of the results.

® | created schema documentation and implemented a RAG pipeline to retrieve relevant information. | used a different configuration to
optimize RAG. It worked better but results were not feasible.

e End solution: | restructured the schema documentation in a more indexable way and | used mini LLMs as agents for marking relevant
parts via their indexes. And then Used marked indexes to recompile only the relevant parts. This resulted in x2 elapsed time but also
the overall cost diminished around 1/16.

e Also the end result was able to create accurate visualisations with accurate diagram types.

EDUCATION & PUBLICATIONS

Master's of Science in Big Data & Al 08/2020 - 07/2022 Bachelor of Biomedical Engineering 09/2014 - 06/2018
Novosibirsk State University, Russia Kocaeli University, Turkey

“Button Press Detection from EEG Signals Using Deep Learning", 2022 |IEEE 23rd International Conference of Young Professionals in
Electron Devices and Materials (EDM), https://doi.org/10.1109/EDM55285.2022.985519

https://doi.org/10.1109/EDM55285.2022.9855191

