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Philosophic question: What is interpretability?

e There is no complete or ultimate interpretability.
e EXxplaining Al is actually a humain related task:
o To what extent ?

o Psychological assurance: The ability to explain or to present in
understandable terms to a human. [1]

o Until we know how to debug/improve it.[2]
m We want to interpret the model because it is still not perfect.

[1]: Towards A Rigorous Science of Interpretable Machine Learning
[2]: The Mythos of Model Interpretability



A broad view of interpretability on CNN

1. Understanding why and how CNN works (how to open the black box)?

a. Visualizing the CNN representation

d. Explaining the causality of the input & the output (explain the decision process)

2. Understanding how CNN is trained (how the black box is built)?

a. Why/How CNN can be optimized by stochastic gradient decent?
b. Why CNN can be well-generalized even though it is over-paramatized?
c. How to find the correct capacity of the CNN model?

3. Using the knowledge from other domain
a. Opening the black box of Deep Neural Networks via Information
b. Why does Deep Learning work? A perspective from Group Theory

c. Why Deep Learning Works: A Manifold Disentanglement Perspective 3
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The interpretability is still not clearly defined

e Most of the survey/tutorials are more or less biased and cover only a part of
the subject (mine as well).

e Several Surveys & Tutorials

Good to see this at first: https://youtu.be/gCJCagQW_LKc

http://heatmapping.org/

Visual Interpretability for Deep Learning: a Survey

Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAl)
Interpretable Deep Learning under Fire

A Survey Of Methods For Explaining Black Box Models

Techniques for Interpretable Machine Learning

CVPRA18: Tutorial: Part 1: Interpreting and Explaining Deep Models in Computer Vision

O 0O O O O O o o
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https://youtu.be/gCJCgQW_LKc
http://heatmapping.org/
https://link.springer.com/article/10.1631/FITEE.1700808
https://ieeexplore.ieee.org/document/8466590
https://www.semanticscholar.org/paper/Interpretable-Deep-Learning-under-Fire-Zhang-Wang/7da9a3929b8a7845916aecc0319f7b8746af8e4a
https://arxiv.org/pdf/1802.01933.pdf
https://www.semanticscholar.org/paper/Techniques-for-Interpretable-Machine-Learning-Du-Liu/3df952d4a724655f7520ff95d4b2cef90fff0cae
https://www.youtube.com/watch?v=LtbM2phNI7I

Why do we interpret the CNN?

Debugging, diagnoizing and improving CNNs
Reponsibility in medical, autonomous driving etc.
Against adversarial attack in security & financial areas
Compliance to legislation (GDPR)

Curiosity

5

IIIIIIIIII



Why do we interpret the CNN?

e Also related to lots of other tasks

o Weakly/unsupervised learning

m Understanding the features and helps the transfer/weakly-supervised learning
o Network redunduncy reduction

m Reducing the useless weights
o Domain adaption / Style transfer

m Understanding the latent representation of the CNN
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Planning of the presentation

e \What is interpretability?
e Why we do interpretability?
e How to interpret the CNNs?

o How to visually explain the CNNs?
m Perturbation based methods
m Backpropagation based methods
m Activation based methods
o Others
m How to understand the high dimensional FC layer?
m Context/Data bias
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e How to visually explain the CNN?
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Perturbation based visualization

(d) Classifier, probability
of correct class

(a) Input Image

e Occlude a part of the image
e \erify how the correct class is changed
e Iterate two steps above on the entire image

Visualizing and Understanding Convolutional Networks
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https://arxiv.org/abs/1311.2901

Occlusion based methods - Disadvantages

e Time consuming
e Dependant on the occlusion size

Original (label: "garter snake") Occlusion-1 Occlusion-5x5 Occlusion-10x10 Occlusion-15x15
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Figure 1: Attributions generated by occluding portions of the input image with squared grey patches
of different sizes. Notice how the size of the patches influence the result, with focus on the main
subject only when using bigger patches.

TOWARDS BETTER UNDERSTANDING OF GRADIENT-BASED ATTRIBUTION METHODS FOR DEEP NEURAL NETWORKS
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https://openreview.net/forum?id=Sy21R9JAW

RISE: Ramdomized Mask Sampling

0.09

Black Box

0.74

0.56

Y

> Weighted sum



https://arxiv.org/pdf/1806.07421.pdf

LIME - Theory

Local Interpretable Model-Agnostic Explanation

!

[} Figure 3: Toy example to present intuition for LIME.
. + +, The black-box model’s complex decision function f
i : (unknown to LIME) is represented by the blue/pink
d . background, which cannot be approximated well by
4 . a linear model. The bold red cross is the instance
+ being explained. LIME samples instances, gets pre-
—l—[ ‘ ® + dictions using f, and weighs them by the proximity
! ®e® . to the instance being explained (represented here
by size). The dashed line is the learned explanation

II é that is locally (but not globally) faithful.
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LIME - Practice on Image (super pixel)

Sample 1

Original Image Interpretable
Components
[Ir,r, ar ]
s =0k SP, SP, SP, SP,
[o,, b, ... b 1] 1 1 1 1




LIME - Local Linear Regression

/.
Perturbed Instances | P(tree frog) A o
v

p

0.85

Loé:ally weighted
regression

0.00001

Original Image o

P(tree frog) = 0.54

0.52

Explanation
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LIME - Explain for each class




Perturbation based visualization - Conclusion

e Advantages
o Model agnostic
o Easy to implement

e Disadvantages
o Time consuming

More methods:

Real Time Image Saliency for Black Box Classifiers

Interpretable Explanations of Black Boxes by Meaningful Perturbation

Towards Explanation of DNN-based Prediction with Guided Feature Inversion

EXPLAINING IMAGE CLASSIFIERS BY COUNTERFACTUAL GENERATION
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https://pdfs.semanticscholar.org/32de/0e7c5b10fb8780af2fc546524b48c1e27a9d.pdf
https://arxiv.org/abs/1704.03296
http://people.tamu.edu/~nhliu43/KDD18_cnn.pdf
https://openreview.net/forum?id=B1MXz20cYQ

Backpropagation based visualization

e Gradient Based
e Deconvolution Based
e Weight Relevance Based
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Gradient Based Method - Saliency Map

Let’s backpass the gradient!

softmax

ds - (%)
ox

indicates which pixels need to be changed
the least to affect the class score the most.

0.04
0.85

0.07
0.01

0.02

“iguana

“dog”

“cat”

“ant”

“crab”

Can be used for segmentation?

Yes

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Stanford CS230 Slide week 7
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https://arxiv.org/pdf/1312.6034
https://cs230.stanford.edu/fall2018/slides_week7.pdf

Gradient Based - Class Model Visulization

Given this trained ConvNet, generate an image which is representative of the class “dog” according to the ConvNet

Noise Image

Input image x
(256,256,3)

input

ZERO
PAD

Repeat this process:

output

e

Keep the We|ghts f|xed and Gradient ascent:
use gradient ascent on the input image ]
to maximize this loss : aL

L=s,,00- Al ox

2.
X=x+0— s

“x should look natural”

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Stanford CS230 Slide week 7

UNIVERSITE
wq Clermont Auvergne

Forward propagate image x
Compute the objective L
Backpropagate to get dL/dx

Update x’s pixels with gradient

ascent

0.02
0.93
0.04

0.07
0.11
0.09



https://arxiv.org/pdf/1312.6034
https://cs230.stanford.edu/fall2018/slides_week7.pdf

Class Model Visulization - Results

goose

ostrich

. . dalmatian

kit fox husky

We can do this for all classes:

Very different from GAN!

L2
Regularization

Looks better with additional
regularization methods.

| Class model visualization |

R O ey SRV iR AR | W mEIa ciuisti | swioween 1y WM, meR wasinIok = ~ Flamingo . Pelican Hartebeest
Déep Inside Convolutional Nefworks: Visualising [mage Classification Models and Saliency Maps

Stanford CS230 Slide week 7
Understanding Neural Networks Through Deep Visualization 20
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https://arxiv.org/pdf/1312.6034
https://cs230.stanford.edu/fall2018/slides_week7.pdf
https://arxiv.org/abs/1506.06579

Deconvolution based method

Let’s backpass the activation!
Motivation of DeconvNets for visualization: Here is a CNN, trained on ImageNet (1.3m images, 1000 classes), we're
trying to interpret by reconstructing the activation’s zone of influence in the input space.

Input image 0.02
(256,256,3) 093
..o input o 004
— ., |zero sormuax| :
. PAD Flatten N 3
Y 007
0.11
009
Only one feature maps (among 256) is displayed here : - (5,5,256)
+ Keep the max activation of
a feature map
* Set all other activations of
the layer to 0
Reconstruction

l__________RelU |

Visualizing and Understanding Convolutional Networks
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https://arxiv.org/abs/1311.2901

Deconvolution based visualization

I
o I =

Layer 2
Visualizations of Layer 1 and 2. Each layer illustrates 2 pictures, one which shows the filters themselves and one that shows what
part of the image are most strongly activated by the given filter. For example, in the space labled Layer 2, we have representations

of the 16 different filters (on the left)

Visualizing and Understanding Convolutional Networks
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https://arxiv.org/abs/1311.2901

Unifying Gradient & Deconv - Guided backprop

ReLU Backward Pass is tricky!

a) Forward pass == i I b) 1]|1]s 1
H a 1 1,—1: L
Input image f n &y f : Forward pass Bl .,
Feature map | 3]2]4 L) el
B ol Backward pass =15 |
econstructe
image R n u - 02 I Backward pass: "
| backpropagation L5 4191° = A
____________________ | 0]-1]3 21-1]13
C g 41 _ . ool |
) activation: £ =relu(f;) = max(f;,0) | ol3]o 2 [BY] 1
) : 9 rout Backward pass:
backpropagation: R! = (f! > 0)- R*! where RI*! = ;)f“_l : CT—Jl 6l] o |f1)] < |6l -3 |it
af; 2|03 2|13
" : |
‘backward . Rf =P 0) . R"-H
deconvnet': ! | olo]o 23| 1
| Backward pass:
guided Rl — (,I >0)- (R 0) . RiH1 guided S 0ROl <— [EGH| -3 |BT B
backpropagation: ¢ ‘i - = ‘ ¢ : backpropagation | o o | 3 2|13

STRIVING FOR SIMPLICITY: THE ALL CONVOLUTIONAL NET
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https://arxiv.org/pdf/1412.6806.pdf

Guided Backpropagation

Target class: Mastiff (243) Vanilla Backprop

STRIVING FOR SIMPLICITY: THE ALL CONVOLUTIONAL NET
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Guided Backprop

=

x

o=tmax-min} -
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https://arxiv.org/pdf/1412.6806.pdf

Layer-wise Relevance Propagation (LRP)

Let’s backpass the weight relevance!

w w®)
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heatmapping.org
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http://www.heatmapping.org/
http://www.heatmapping.org/

LRP - Visualization

Classification Pixel-wise Explanation
| cat =
——> - —> [ B - = son =
— no cat = l:l
Image x Features Glassifier f(x) = 3 Feature Relevances = ) Pixel Relevances
output f(x)
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Backpropagation based visualization - Conclusion

e Advantages

o Quick to compute

o Fine-grained interpretation
e Disadvantages

o Low quality
o Usually difficult to understand
o  Only for CNN (connectionism)

IIIIIIIIII
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Activation based visualization - CAM

Hypothesis: Each channel on the last conv layer presents spatial information for
an abstract concept (a dog head, a dog tail etc.).

e Australian
C C C C c W, />. terrier
@) @) (@] O Pf “ .
N N N N .
v v W,
\% \4 n

Class Activation Mapping

Class
Activation
Map

(Australian terrier)

W + Wy % e W »

¥ Al

Learning Deep Features for Discriminative Localization
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https://people.csail.mit.edu/bzhou/publication/Zhou_Learning_Deep_Features_CVPR_2016_paper.pdf
https://people.csail.mit.edu/bzhou/publication/Zhou_Learning_Deep_Features_CVPR_2016_paper.pdf

Activation based visualization - Network dissection

From visulization to interpretation:

1. Define a broad dictionary of candidate concepts.
Broden Dataset

red (color ! : wrinkled (texture) N
ADE20K Zhou et al, CVPR 17 h

Pascal Context ~ Mottaghi et al, CVPR ‘14 fht = (mate"a') B (mate”a')
Pascal Part Chen et al, CVPR ‘14
Open Surfaces Bell et al, SIGGRAPH ‘14

g 9 ‘ foot( art door art al Iane obect
Desc Textures Cimpoi et al, CVPR ‘14
Colors generated

Total = 63,305 images T Y

ect art studio (soene beach (scene)
| =
1,197 concepts Q“ E

Network Dissection: Quantifying Interpretability of Deep Visual Representations 29
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http://netdissect.csail.mit.edu/final-network-dissection.pdf

Network dissection

2. Test each internal unit on segmentation of every concept.
5 gl (sl 00 P I

Network Dissection: Quantifying Interpretability of Deep Visual Representations 30



http://netdissect.csail.mit.edu/final-network-dissection.pdf

Network dissection

3. Measure segmentation quality and match units to concepts.

Unit 2 Top activated image areas
) §
DRHOGER =
Area of Overlap J
Lamp Intersection over Union (loU) =0.12 =

.-. . -

loU of the best-matched concepts quantify interpretability

Network Dissection: Quantifying Interpretability of Deep Visual Representations
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http://netdissect.csail.mit.edu/final-network-dissection.pdf

Network dissection - Visualization

AlexNet on Places205

veined (texture) h:sky grass (object)

40 h:green sky (obj
=0~ object q ’

0 351|-0- pan 1
g scene 7
8 30|-0- material 5 |
L) ~ O~ texture ’
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o 25 color 4
= /
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a P i red (color)
g 10 - -’ y
5 - S SR
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40 AlexNet on ImageNet red (color) food (material)

=0~ object

o 35 -0 part
=] scene
‘&", 30 [{=0~ material
3 —O- texture yellow (color) h:yellow banded (texture) h:striped
o 25 color 1
S N 3
220t 5 s - A
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Network Dissection: Quantifying Interpretability of Deep Visual Representations
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veog|

banded (texture) h:corrugated tree (object)

conv3

h:grass chequered (texture) h:windows
N

P

h:orange muzzle (part)  h:animal face

bed (object) h:bed

car (object)

mountain (scene) h:montain

wheel (part) h:wheels

cat (object) h:animal faces

leg (part)

convs
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http://netdissect.csail.mit.edu/final-network-dissection.pdf

Activation based visualization - Conclusion

e Advantages
o [Easy to interpret

e Disadvantages
o Coarse mask
o CNN based

UNIVERSITE



e How to visually explain the CNN?
e Others

UNIVERSITE
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Mining the high dimensional FC layers

1. Use t-SNE to embed the feature (dimension reduction)
a. https://harveyslash.qgithub.io/TSNE-Embedding-Visualisation/
b. the reason why we do the dimension reduction is under assumption of strong correlation
between the neurons

2. Using a linear classifier probes

Use an interpretable tool (linear classifier) to measure the capacity of each FC layer (Maybe wrong)

conv 5x5 maxpool conv 5x5 maxpool
32 filters RelU 250 64 filters RelU 202 matmul RelU matmul

dput N Y O e e e ) ), output
images "\ \_/ i/ Nt N Nk St 1/ logits
I

convolution convolution fully-connected fully-connected
layer layer layer layer

Linear Classifer Linear Classifer Linear Classifer

Understanding intermediate layers using linear classifier probes 35
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https://harveyslash.github.io/TSNE-Embedding-Visualisation/
https://openreview.net/forum?id=HJ4-rAVtl

Linear classifier probes - results

Some counter-intuitive conclusions !

0.10 T T T T T T T T T T 0.10 T T T T T T T T T
0.08} 1 0.08}
5 5
3 0.06 3 0.06f
s s
g g
3 3
So.0af 20.04
8 8
0.02} g 0.02t
0.00 . = . — T 0.00 R . —t
o eac. .@c 9°° (o 90 e'ﬂ" épt 09\ o e ot 900 @a @C 90 o
! O(N y ‘004'\ q\y 4@17—«"0“{2. Qos ‘pE‘-‘C 9 ; \(_ % CO‘N ’io(\l\ 905“\‘&’@‘3:(\‘19 905 Q ‘{d\y (9-“' » Y
(a) After initialization, no training. (b) After training for 10 epochs.
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Context - dataset bias

Examining CNN Representations with respect to Dataset Bias/Distribution

Where does the CNN look at when it classify the “wearing lipstick” attribute?

Original )
Pasted

< me. Masked ‘ \

Examining CNN Representations with respect to Dataset Bias
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https://arxiv.org/abs/1710.10577

Context - dataset bias

Examining CNN Representations with respect to Dataset Bias

\/

Yhlack hair=Y es@
Ysmflingzyes

Representation

of black hair

Great

Conflict

overlap ==

Representation

of smiling.

Ground-truth
attribute
relationship
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Context - dataset bias

How facial attributes are correlated

Ground-truth attribute ‘ Mined attribute

relationships relationships

©
O
wn
=
<
™

CelebA
>
) dataset
—
>
@
oQ
Y,
(073
<
m
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Integrate explainable models into CNNs

(decision trees)

y=‘8;87

=9

=

Interpreting CNNs via Decision Trees
Interpretable Convolutional Neural Networks

Explanatory
tree

(d) Our explanations

Distribution of

‘@ contributions of

different filters

Feature maps
of a nape filter
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https://www.semanticscholar.org/paper/Interpreting-CNNs-via-Decision-Trees-Zhang-Yang/30a2241b24d0a9b29ad6a1ad1d0e40706235cfa1
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Interpretable_Convolutional_Neural_CVPR_2018_paper.pdf

Thank you




